ECS 332: Tutorial

1) [M2018] Evaluate the following integral: $\int_{0}^{1} \delta\left(e^{2 t}-2\right) d t$

Method 1: Use integration by substitution (change of variables):
Let $u=e^{2 t}-2$. Then, $t=\frac{1}{2} \ln (u+2)$ and $\frac{d t}{d u}=\frac{1}{2} \frac{1}{u+2}$. Therefore,

$$
\int_{0}^{1} \delta\left(e^{2 t}-2\right) d t=\int_{u=e^{2 t}-\left.2\right|_{t=0}}^{u=e^{2 t}-\left.2\right|_{t=1}} \delta(u) \frac{1}{2} \frac{1}{u+2} d u=\int_{-1}^{e^{2}-2} \frac{1}{2} \frac{1}{u+2} \delta(u) d u
$$

Now, $e^{2}-2 \approx 5.3891$. Therefore, $u=0$ is inside the range of integration.
From the sifting property of the δ-function, the integral becomes

$$
\left.\frac{1}{2} \frac{1}{u+2}\right|_{u=0}=\frac{1}{4}
$$

Method 2: When we deal with δ-function, we know that only the value at 0 of its argument matters. So, we will try to see how $e^{2 t}-2$ behaves near the value of t that makes it close to 0 which is $t_{0}=$ $\frac{1}{2} \ln (2) \approx 0.3466$.
Recall, from calculus, that any nice function can be approximated by a straight line if we consider only small region. In particular, for t near t_{0}, a function $g(t)$ can be approximated by

$$
g(t) \approx g^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+g\left(t_{0}\right)
$$

(To see this, note that the slope at $t=t_{0}$ can be approximated by $g^{\prime}\left(t_{0}\right) \approx \frac{g(t)-g\left(t_{0}\right)}{t-t_{0}}$.) From $g^{\prime}(t)=2 e^{2 t}$, we have $g^{\prime}\left(t_{0}\right)=\left.2 e^{2 t}\right|_{t=\frac{1}{2} \ln (2)}=4$ and we know that, around $t=t_{0}$,

$$
g(t) \approx g^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+0=4\left(t-t_{0}\right)
$$

Therefore, the integral becomes

$$
\int_{0}^{1} \delta\left(e^{2 t}-2\right) d t=\int_{0}^{1} \delta\left(4\left(t-t_{0}\right)\right) d t
$$

Applying $\delta(a t)=\frac{1}{|a|} \delta(a t)$, we have

$$
\int_{0}^{1} \delta\left(e^{2 t}-2\right) d t=\int_{0}^{1} \frac{1}{|4|} \delta\left(t-t_{0}\right) d t=\frac{1}{4} \int_{0}^{1} \delta\left(t-t_{0}\right) d t
$$

From the sifting property of the δ-function, because $t_{0} \approx 0.3466$ is inside the integration range, the value of the integral is simply $\frac{1}{4}$.
2) [M2018] The impulse response of a multipath channel is of the form

$$
h(t)=\sum_{k=1}^{v} \beta_{k} \delta\left(t-\tau_{k}\right) .
$$

Plot $|H(f)|$ when $v=2, \beta_{1}=\beta_{2}=0.5, \tau_{1}=1, \tau_{2}=3$
Consider the frequency from $f=-1$ to $f=1 \mathrm{~Hz}$.

Here, we have $h(t)=0.5 \delta(t-1)+0.5 \delta(t-3)$.
We will present three solutions below. If you have familiarized yourselves with properties of Fourier transform, method 1 is easy and can quickly give you the answer. Method 3 tries to solve the problem directly without recalling any Fourier transform properties.

Method 1: Recall that

$$
\cos \left(2 \pi f_{0} t\right) \xrightarrow{\mathcal{F}} \frac{1}{2} \delta\left(f-f_{0}\right)+\frac{1}{2} \delta\left(f+f_{0}\right) .
$$

So, a cosine corresponds to two δ-functions of equal size in another domain. Here, we have two δ functions in the time domain; so, we expect a cosine in the freq. domain. To reduce confusion, we will rename the constant f_{0} to a :

$$
\cos (2 \pi a t) \xrightarrow{\mathcal{F}} \frac{1}{2} \delta(f-a)+\frac{1}{2} \delta(f+a) .
$$

From the above relation, applying duality theorem, we have

$$
y(t) \equiv \frac{1}{2} \delta(t-a)+\frac{1}{2} \delta(t+a) \xrightarrow{\mathcal{F}} \cos (2 \pi a(-f))=\cos (2 \pi a f) \equiv Y(f)
$$

On the LHS, we have two δ-functions of equal size, centering around $t=0$, with separation distance $=2 a$.
In this problem, $h(t)=y(t-2)$ and $a=\frac{2}{2}=1$. By the time-shift property of Fourier transform,

$$
H(f)=e^{-j 2 \pi(2) f} Y(f)
$$

and

$$
|H(f)|=|Y(f)|=|\cos (2 \pi a f)|=|\cos (2 \pi f)| .
$$

Method 2: Recall, from our lecture on the two-path channel (Ex. 3.35):
When $h(t)=\beta_{1} \delta\left(t-\tau_{1}\right)+\beta_{2} \delta\left(t-\tau_{2}\right)$, we have

$$
|H(f)|^{2}=\left|\beta_{1}\right|^{2}+\left|\beta_{2}\right|^{2}+2\left|\beta_{1}\right|\left|\beta_{2}\right| \cos \left(2 \pi\left(\tau_{2}-\tau_{1}\right) f+\left(\phi_{1}-\phi_{2}\right)\right),
$$

where ϕ_{1} and ϕ_{2} are the phases of β_{1} and β_{2} respectively.
Here,

$$
|H(f)|^{2}=0.5^{2}+0.5^{2}+2 \times 0.5^{2} \cos (2 \pi(2) f)=\frac{1}{2}(1+\cos (2 \pi(2) f))
$$

From $\cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x))$, we have

$$
|H(f)|=\sqrt{\frac{1}{2}(1+\cos (2 \pi(2) f))}=\left|\cos \left(\frac{2 \pi(2) f}{2}\right)\right|=|\cos (2 \pi f)|
$$

Method 3: Using the time-shift property of Fourier transform, we have

$$
\begin{aligned}
H(f) & =0.5 e^{-j 2 \pi(1) f}+0.5 e^{-j 2 \pi(3) f}=e^{-j 2 \pi(2) f}\left(0.5 e^{j 2 \pi(1) f}+0.5 e^{-j 2 \pi(1) f}\right) \\
& =e^{-j 2 \pi(1.5) f} \cos (2 \pi f) .
\end{aligned}
$$

Therefore,

$$
|H(f)|=|\cos (2 \pi f)| .
$$

All methods give the same $|H(f)|$ below:

